
Rounding Techniques in Approximation Algorithms

Lecture 6: Randomized Pipage Rounding and k-ECSM
Lecturer: Nathan Klein

1 Randomized Pipage Rounding

1.1 Recap

In the last lecture, we discussed the randomized pipage rounding algorithm [AS04; CVZ10]. In
particular, we (i) proved that the following is the convex hull of all integral spanning trees of a
graph:

Pst =


x(E) = |V| − 1
x(E(S)) ≤ |S| − 1 ∀S ⊆ V
xe ≥ 0 ∀e ∈ E.

and (ii) proved the following lemma:

Lemma 1.1. Let x ∈ Pst. Then, there exists a direction d ∈ RE with exactly two non-zero coordinates,
one −1 and one +1, and an ε, δ > 0 so that x + εd ∈ Pst and x− δd ∈ Pst, both points have a new tight
constraint, and all previous tight constraints remain tight.

This allowed us to define the randomized pipage rounding algorithm:

Randomized Pipage Rounding (for Pst)

Given x ∈ Pst, apply Lemma 1.1 to find points x + εd and x− δd (where d ∈ ZE has exactly
two non-zero coordinates, one −1 and one 1). With probability p = δ

ε+δ , move to x + εd.
Otherwise, move to x− δd.

Repeat until x is integral and return the resulting tree T.

In the previous lecture, we argued that this algorithm runs in deterministic polynomial time.
In this lecture, we will complete the proof of the following theorem by proving (1) and (2):

Theorem 1.2. Let x ∈ Pst. Then, if T is the random tree produced by randomized pipage rounding, the
following holds:

1. P [e ∈ T] = xe for all e ∈ E.

2. The variables {I {e ∈ T}}e∈E have the negative cylinder property, i.e.

(a) P [S ⊆ T] ≤ ∏e∈S xe for all S ⊆ E, i.e. the distribution over trees produced by pipage rounding
is negatively correlated.

(b) And similarly, P [|S ∩ T| = 0] ≤ ∏e∈S(1− xe). This is sometimes called 0-negative correla-
tion.

Furthermore, randomized pipage rounding runs in deterministic polynomial time.
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1.2 Expectation is Preserved

Proving that P [e ∈ T] = xe for all e ∈ E is almost obvious, since at every step, if x′ is the new
point produced, then by our choice of p we have E [x′] = x. However, we will prove it formally to
better set up the proof of the negative cylinder property (2).

Let x1, x2, . . . , x` be the sequence of points returned by pipage rounding with x1 = x and x`

the integral tree. For convenience, we choose ` such that x` is an integral tree with probability 1.
In this way, it may be that at some point i in the process, xi = xi+1 = · · · = x`.

We will now prove that P [e ∈ T] = xe for all e ∈ E, or equivalently E
[
x`e
]
= xe for all

e ∈ E. In particular, we will show that E
[
xi+1

e | xi] = xi
e for all 1 ≤ i ≤ ` − 1. This implies

E
[
xi+1

e
]
= E

[
xi

e
]

by taking the expectation of both sides,1 which gives the desired claim since
E
[
x`e
]
= E

[
x`−1

e
]
= · · · = E

[
x1

e
]
= xe. So it remains to prove the following.

Fact 1.3. E
[
xi+1

e | xi] = xi
e for all i.

Proof. There are two cases, where notice that we may assume the algorithm deterministically
chooses the values of d, ε, and δ given an input xi.

1. Given that the output of step i is xi, e is not updated in step i + 1, i.e. de = 0. Then, xi+1
e = xi

e
and the claim is true.

2. Given that the output of step i is xi, in step i + 1 de is non-zero. Then,

E
[

xi+1
e | xi

]
=

δ

ε + δ
(xi

e + εde) +
ε

ε + δ
(xi

e − δde) = xi
e.

Therefore, property (1) in Theorem 1.2 is true.

1.3 Negative Correlation and 0-Negative Correlation

We will prove property (2a) in Theorem 1.2 somewhat similarly, and Property (2b) has an
identical proof which we will omit. We need to show that for every set S ⊆ E, we have
E
[
∏e∈S x`e

]
≤ ∏e∈S xe. Thus, as before, we will do this inductively. We will show that for every i,

E

[
∏
e∈S

xi+1
e | xi

]
≤∏

e∈S
xi

e (1)

Similarly to above, by taking expectations of both sides and chaining the inequalities we prove the
desired property. So it remains to show Eq. (1).

Fact 1.4. Eq. (1) holds.

Proof. Given xi, the algorithm will pick two edges e, f and define de = 1, d f = −1 and dg = 0
for all g 6= e, f . Thus, for all variables xi+1

g for g 6= e, f , xi+1
g = xi

g. Therefore, if S ∩ {e, f } = ∅,

1In particular, we have E
[

xi+1
e

]
= ∑xi P

[
xi
]

E
[

xi+1
e | xi

]
= ∑xi P

[
xi
]

xi
e = E

[
xi

e

]
.
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the claim trivially holds. If |S ∩ {e, f }| = 1, then this holds with equality due to Fact 1.3. So, the
interesting case is when |S ∩ {e, f }| = 2. Then,

E

[
∏
e∈S

xi+1
e | xi

]
= E

[
xi+1

e xi+1
f | xi

]
∏

g 6=e, f∈S
xi

g

So to prove the claim it suffices to show that E
[

xi+1
e xi+1

f | xi
]
≤ xi

exi
f . We can verify this easily:

E
[

xi+1
e xi+1

f | xi
]
=

δ

ε + δ
(xi

e + ε)(xi
f − ε) +

ε

ε + δ
(xi

e − δ)(xi
f + δ)

= xi
exi

f − εδ ≤ xi
exi

f

as desired.

Therefore, following the discussion in the previous subsection, (2) holds in Theorem 1.2.

1.4 Chernoff bounds

Perhaps the most important thing about distributions that are negatively correlated is that they
imply the same Chernoff bound upper tail we have been using for independent Bernoullis.
Similarly, 0-negative correlation implies the Chernoff bound lower tail.

In this lecture we will use the following version of the lower tail, which we recall here:

Theorem 1.5 (Chernoff Lower Tail). Let X1, . . . , Xn be 0-negatively correlated Bernoulli random variables.
Then if X = ∑n

i=1 Xi, L ≤ E [X], and 0 ≤ δ ≤ 1, we have:

P [X ≤ (1− δ)L] ≤ exp(−Lδ2/2)

2 Applying Pipage Rounding to k-ECSM

The k-ECSM problem is defined as follows. Given a graph G = (V, E) with costs ce ≥ 0 on the
edges, find the cheapest collection of edges that k-edge-connects the graph. Every edge can be used
as many times as desired at the same cost. Recall the following polytope for k-edge-connectivity:

Pk−EC =

{
∑e∈δG(S) xe ≥ k ∀∅ ( S ( V
xe ≥ 0 ∀e ∈ E

The first step of the approximation algorithm of [Kar+22] will be to solve the natural LP, i.e. find a
point x in this polytope minimizing ∑e∈E cexe.

Lemma 2.1. Given x ∈ Pk−EC, (
1− 1

n

)
2
k

x ∈ Pst

Proof. We first apply the parsimonious property [GB93] without proof, which says that we may
assume all vertices have degree exactly k, i.e. x(δ(v)) = k for all v ∈ V. Now we simply verify the
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inequalities. Let y = (1− 1
n )

2
k x. First, x(E) = kn

2 , so y(E) = kn
2 (1−

1
n )

2
k = n− 1. Second, fix any

cut S ⊂ V. Then,

∑
e∈E(S)

xe =
k|S| − x(δ(S))

2
≤ k

2
(|S| − 1)

Therefore after scaling down x by 2
k , y(E(S)) ≤ |S| − 1 (note we did not even need the additional

1− 1
n factor).

We can now define the algorithm.

Algorithm for k-ECSM

1. Solve the LP to obtain (parsimonious) x ∈ Pk−EC.

2. Let y = 2
k (1− 1/n)x. Sample k

2 + 1 trees T1, . . . , Tk/2+1 independently using pipage
rounding starting at y ∈ Pst (which holds by Lemma 2.1). Let T∗ be the multi-set
union of these trees, i.e. counting edges with multiplicity.

3. Add
√

k ln k copies of the minimum spanning tree to T∗.

4. Initialize R = ∅. For each tree i in T1, . . . , Tk/2+1, check each of its cuts S ⊂ V with
|δTi(S)| = 1. If |δT∗(S)| < k, put a copy of the unique edge e ∈ δTi(S) in the set R.

5. Output R ] T∗.

Lemma 2.2. The output of the algorithm, R ] T∗, is k-edge-connected (with probability 1).

Proof. Consider any cut S ⊂ V. We will show it has at least k edges in the output. If |δT∗(S)| ≥ k,
then there is nothing to prove. Otherwise, |δT∗(S)| < k. In this case, in (4) of the above algorithm,
every tree Ti such that |δTi(S)| = 1 will increase |δR(S)| by 1. In this way, every tree Ti contributes
at least 2 edges to |δR]T∗ |. The fact that there are at least k/2 trees completes the proof.

We will now analyze the expected cost of the algorithm. Let Xi
e indicate if edge e is added to

R as a result of tree Ti.

Lemma 2.3. E
[
Xi

e
]
≤ 2k−3/2xe.

Proof. Xi
e is 0 if e 6∈ Ti. Therefore it suffices to bound E

[
Xi

e | e ∈ Ti
]
. Condition on e ∈ Ti and any

tree Ti. Then,
P
[

Xi
e = 1 | Ti

]
≤ P [|δT∗rTi(S)| < k]

In other words, Xi
e = 0 whenever the remaining k/2 trees have at least k edges across S (of course,

it is sufficient that the remaining k/2 trees have at least k− 1 edges, but we use this for ease of
notation).

Let T =
⊎

j 6=i∈[k/2+1] Ti. By (3) and the above equation,

P
[

Xi
e = 1 | Ti

]
≤ P

[
|δT(S)| ≤ k−

√
k ln k

]
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Using that x(δ(S)) ≥ k, we have y(δ(S)) ≥ 2(1− 1/n), so (ignoring the (1− 1/n) factor2) we

obtain E [|δT(S)|] ≥ k. Applying a Chernoff bound with L = k and δ =
√

ln k
k , we obtain a bound

of
P
[

Xi
e = 1 | Ti

]
≤ e−δ2k/2 =

1√
k

Now we can bound:

E
[

Xi
e

]
= ∑

T
P [T] I {e ∈ Ti}P

[
Xi

e = 1 | Ti

]
≤ 1√

k
∑
T

P [T] I {e ∈ Ti} ≤ 2k−3/2xe

where we used that P [e ∈ Ti] ≤ 2
k xe.

Theorem 2.4. This algorithm is a 1 + O
(√

log k
k

)
approximation for k-ECSM.

Proof. First we bound the expected cost of sampling the first k/2 + 1 trees. This is at most
2
k · (

k
2 + 1) · c(x) = (1 + 2

k )c(x) ≤ (1 + 2
k ) ·OPT in expectation.

Next we bound the cost of the additional
√

k ln k trees. Since the spanning tree polytope is

integral, c(MST) ≤ c(y), so this costs at most
√

k ln k · 2
k ·OPT = 2

√
ln k

k ·OPT in expectation.

Finally, we bound the expected cost of R. Let Xe = ∑k/2+1
i=1 Xi

e. Then, c(R) = ∑e∈E Xece. But,

E [Xe] =

(
k
2
+ 1
)

E
[

Xi
e

]
≤
(

k
2
+ 1
)

2k−3/2xe ≤
3√
k

xe

Where we use a very loose bound for the last inequality for simplicity. Therefore by linearity of
expectation,

E [c(R)] ≤ ∑
e∈E

3√
k

cexe ≤
3√
k
·OPT

Summing the three terms proves the theorem.

We note that [Kar+22] proves a stronger guarantee of 1 + O(1/
√

k) for a variant of this
algorithm using max entropy sampling instead of pipage rounding. This was improved to
1 + O(1/k) by [HKZ24], who also demonstrated that no asymptotically better approximation
exists unless P=NP.
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